Jamieson, P. B. \& Dent-Glasser, L. S. (1966a). Acta Cry'st. 20, 373-376.
Jamieson, P. B. \& Dent-Glasser, L. S. (1966b). Acta Cry'st. 20. 688-693.
Jamieson, P. B. \& Dent-Glasser, L. S. (1967). Acta Cryst. 22, 507-522.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Jost, K. H. \& Hilmer, W. (1966). Acta Cryst. 21, 583-589.
Koester, L. \& Rauch, H. (1981). Summary of Neutron Scattering Lengths. IAEA contract 2517/RB.
Lehmann, M. S. \& Larsen, F. K. (1974). Acta Cryst. A 30. 580-584.

Lehmann, M. S. \& Wilson, S. (1982). College V Data Reduction System: Treatment of Reflection Profiles. ILL Tech. Rep. 74 LIIIT. Institut Laue-Langevin, Grenoble, France.
Schmid, R., Huttner, G. \& Felsche. J. (1979). Acta Crist. B35. 3024-3027.
Schmid. R. L., Szolnay, L., Felsche. J. \& Huttner. G. (1981). Acta Cry'st. B37, 789-792.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge. England.
Smolin, Yu. I.. Shepelev, Yu. F. \& Butikova. I. K. (1973). Sor. Phys. Crystallogr. 18. 173-176.
Williams. P. P. \& Dent-Glasser. L. S. (1971). Acta Crist. B27. 2269-2275.

Acta Cryst. (1984). C40, 736-738

# Structure of Calcium Thymidine $5^{\prime}$-Phosphate Dihydrate, $\mathrm{Ca}^{2+} . \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{\mathbf{8}} \mathrm{P}^{\mathbf{2 -}} . \mathbf{2 H} \mathbf{2} \mathbf{O}$ 

By Tomohiro Sato<br>Shionogi Research Laboratories, Shionogi \& Co. Ltd, Fukushima-ku, Osaka 553. Japan

(Received 13 October 1983: accepted 11 November 1983)


#### Abstract

M_{r}=396.3\), monoclinic, $P 2_{1}, a=12.821$ (5), $b=11.050$ (2), $c=5.543$ (1) $\AA, \beta=98.95$ (3) ${ }^{\circ}, V=$ 775.7 (4) $\AA^{3}, Z=2, D_{x}=1.697 \mathrm{Mg} \mathrm{m}^{-3}$, Мо $K \alpha, \lambda$ $=0.7107 \AA, \quad \mu=0.56 \mathrm{~mm}^{-1}, \quad F(000)=412, \quad T=$ 298 K , final $R=0.030$ for 2146 observed reflections. The molecule has a $\mathrm{C}\left(4^{\prime}\right)$-exo ( $E_{4}$ ) sugar associated with an anti glycosidic bond rotation Itorsion angle $\left.\mathrm{O}\left(4^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{N}(1)-\mathrm{C}(6)=65.7(4)^{\circ}\right]$. The conformations about the $\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$ and $\mathrm{C}\left(5^{\prime}\right)-\mathrm{O}\left(5^{\prime}\right)$ bonds are trans-gauche [torsion angle $\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-$ $\mathrm{O}\left(5^{\prime}\right)=-60.4(3)^{\circ}$ ] and trans [torsion angle $\mathrm{C}\left(4^{\prime}\right)-$ $\mathrm{C}\left(5^{\prime}\right)-\mathrm{O}\left(5^{\prime}\right)-\mathrm{P}=-153.5(2)^{\circ} \mathrm{I}$, respectively. All available H atoms participate in hydrogen bonding.


Introduction. The crystal structure of calcium thymidine 5 '-phosphate hexahydrate has been reported (Trueblood, Horn \& Luzzati, 1961). We have found another crystalline form of calcium thymidine $5^{\prime}$ phosphate and subjected it to X-ray analysis. This study is part of a series of crystallographic investigations of nucleic acid constituents.

Experimental. Crystals grown from water/2-methyl2,4 -pentanediol solution by vapor diffusion, colorless plates, crystal $0.04 \times 0.20 \times 0.40 \mathrm{~mm}$ used for data collection, Rigaku AFC-5 diffractometer, graphitemonochromator; lattice parameters refined by leastsquares method ( 22 reflections, $29<2 \theta<40^{\circ}$ ); intensities measured up to $2 \theta=60^{\circ}\left(\sin \theta / \lambda \leq 0.704 \AA^{-1}\right), \omega$ scan $\left(2 \theta \leq 30^{\circ}\right), \omega-2 \theta$ scan $\left(2 \theta>30^{\circ}\right), 3$ standard reflections, no variation, 2363 independent reflections, $h$ $0-15, k 0-12, l=-6-6$, no absorption correction; structure solved by MULTAN (Main, Hull, Lessinger.

Germain, Declercq \& Woolfson, 1978), Ca and the phosphate group located from $E$ map, the other non- H atoms from weighted Fourier, H atoms from difference Fourier; structure refined by block-diagonal leastsquares method, anisotropic temperature factors for non- H atoms, isotropic temperature factors for H atoms, $\sum w \Delta^{2}$ minimized, $\Delta=\left|F_{\theta}\right|-\left|F_{c}\right|, n=1 / \sigma^{2}\left(F_{\theta}\right)$ for $\quad\left|F_{c}\right| \geq 3 \sigma\left(F_{t}\right), \quad w=0 \quad$ for $\quad\left|F_{c}\right|<3 \sigma\left(F_{\theta}\right) \quad$ or $|\Delta| \geq 3 \sigma\left(F_{o}\right), \quad \sigma\left(F_{o}\right)=\left.\left.\left|\sigma_{1}^{2}\left(F_{o}\right)+0.00020\right| F_{o}\right|^{2}\right|^{1 / 2}$. $\sigma_{1}\left(F_{o}\right)$ is e.s.d. based on counting errors (Grant. Killean \& Lawrence, 1969),* $R=0.030$ for 2146 reflections $(n \neq 0), R_{w}=0.033, S=1.05$; atomic scattering factors from International Tables for X-ray Crystallography (1974).

Discussion. Refined atomic coordinates are given in Table 1. A perspective view of the molecule is shown in Fig. 1. Bond distances and angles are listed in Table 2.

The deoxyribose ring adopts a $C\left(4^{\prime}\right)$-exo puckering. The pseudorotation coordinates of the five-membered ring (Sato, 1983) are $\Pi=36.8$ (3), $\Phi=151.5$ (5) ${ }^{\circ}$. A pucker quite similar to this has been observed in 5-acetyl-2'-deoxyuridine (Barr, Chananont, Hamor, Jones, O'Leary \& Walker, 1980), but C(4')-exo puckers are rather exceptional in the crystal structures of nucleosides and nucleotides so far observed. The sugar is associated with an anti base. The glycosidic torsion

0108-2701/84/050736-03\$01.50

[^0] © 1984 International Union of Crystallography

Table 1. Fractional atomic coordinates and isotropic thermal parameters

| $B_{\text {eq }}=\frac{8}{3} \pi^{2} 亡_{i} Ц_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} . \mathbf{a}_{j}$. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $x$ | $y$ | $z$ | $B_{\text {eq }}\left(\AA^{2}\right)$ |
| N(1) | 0.5228 (2) | 0.5548 (3) | 0.0302 (5) | 2.06 (6) |
| C(2) | 0.6145 (2) | 0.6138 (3) | -0.0054 (6) | 2.52 (7) |
| $\mathrm{N}(3)$ | 0.7031 (2) | 0.5794 (3) | 0.1533 (5) | 2.73 (7) |
| C(4) | 0.7054 (2) | 0.5045 (3) | 0.3564 (5) | 2.22 (6) |
| C(5) | 0.6069 (2) | 0.4436 (3) | 0.3787 (5) | 2.14 (7) |
| C(6) | 0.5216 (2) | 0.4712 (3) | 0.2152 (5) | $2 \cdot 16$ (7) |
| $\mathrm{O}(2)$ | 0.6165 (2) | 0.6884 (3) | -0.1661 (6) | 4.55 (8) |
| $\mathrm{O}(4)$ | 0.7870 (2) | 0.4903 (3) | 0.5009 (4) | $3 \cdot 19$ (6) |
| $\mathrm{C}(7)$ | 0.6056 (3) | 0.3522 (4) | 0.5758 (6) | 3.08 (8) |
| $\mathrm{O}\left(4^{\prime}\right)$ | 0.3600 (2) | 0.6474 (2) | 0.0273 (5) | 2.98 (6) |
| C(1') | 0.4245 (2) | 0.5869 (3) | -0.1246 (5) | 2.30 (7) |
| $\mathrm{C}\left(2^{\prime}\right)$ | 0.3588 (2) | 0.4799 (3) | -0.2443 (6) | 2.76 (8) |
| C( $3^{\prime}$ ) | 0.2503 (2) | 0.4946 (3) | -0.1622 (4) | 1.75 (6) |
| $\mathrm{C}\left(4^{\prime}\right)$ | 0.2516 (2) | 0.6257 (3) | -0.0764 (5) | 1.85 (6) |
| O(3') | $0 \cdot 1640$ (1) | 0.4765 (2) | -0.3508 (4) | 2.31 (5) |
| C(5') | $0 \cdot 1862$ (2) | 0.6520 (3) | 0.1194 (5) | 2.39 (7) |
| $\mathrm{O}\left(5^{\prime}\right)$ | 0.0791 (1) | 0.6223 (2) | 0.0229 (3) | 1.74 (4) |
| P | -0.01614 (5) | 0.6914 (1) | 0.1309 (1) | 1.05 (1) |
| O(1P) | 0.0031 (2) | 0.8260 (2) | 0.1058 (3) | 1.72 (4) |
| $\mathrm{O}(2 \mathrm{P})$ | -0.1079 (1) | 0.6405 (2) | -0.0459 (3) | 1.61 (4) |
| $\mathrm{O}(3 \mathrm{P})$ | -0.0134 (2) | 0.6558 (2) | 0.3942 (3) | 1.81 (4) |
| Ca | -0.02743 (3) | 0.5049 | -0.3293 (1) | 1.09 (1) |
| O(WI) | -0.0311 (2) | 0.3649 (2) | -0.6408 (4) | 3.28 (7) |
| $\mathrm{O}(W 2)$ | -0.2251 (2) | 0.7947 (3) | -0.3867 (6) | 4.88 (9) |

Table 2. Molecular dimensions

| Bond distances ( $\dot{A}$ ) |  |  |  |
| :---: | :---: | :---: | :---: |
| N(1)-C(2) 1 | 1.385 (5) | $\mathrm{O}\left(4^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$ | 39 (4) |
| $N(1)-C(6) \quad 1$ | 1.382 (5) | $\mathrm{C}\left(1^{\prime}\right) \cdot \mathrm{C}\left(2^{\prime}\right)$ | 41 (5) |
| $N(1)-C(1) \quad 1$ | 1.454 (5) | $\mathrm{C}\left(2^{\prime}\right) \mathrm{C}\left(3^{\prime}\right)$ | 38 (5) |
| $\mathrm{C}(2)-\mathrm{N}(3) \quad 1$ | 1.378 (5) | C(3') C(4') | 24 (5) |
| $\mathrm{C}(2)-\mathrm{O}(2) \quad 1$ | 1.217 (5) | $\mathrm{C}\left(3^{\prime}\right) \mathrm{O}\left(3^{\prime}\right)$ | 13 (4) |
| $\mathrm{N}(3) \mathrm{C}(4) \quad 1$ | 1.394 (5) | $\mathrm{C}\left(4^{\prime}\right) \cdot \mathrm{C}\left(5^{\prime}\right)$ | 00 (5) |
| $\mathrm{C}(4)-\mathrm{C}(5) \quad 1$ | 1.453 (5) | $\mathrm{C}\left(5^{\prime}\right) \mathrm{O}\left(5^{\prime}\right)$ | 32 (4) |
| $\mathrm{C}(4)-\mathrm{O}(4) \quad 1$ | $1 \cdot 225$ (5) | $\mathrm{O}\left(5^{\prime}\right)-\mathrm{P} \quad 1$. | 31 (2) |
| $\mathrm{C}(5)-\mathrm{C}(6) \quad 1$ | $1 \cdot 342$ (5) | P O(IP) | 18 (3) |
| $\mathrm{C}(5) \mathrm{C}(7) \quad 1$ | 1.490 (6) | P O(2P) | 17 (2) |
| $\mathrm{O}\left(4^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right) \quad 1$ | 1.434 (4) | P O(3P) | 07 (3) |
| Bond angles ( ${ }^{\circ}$ ) |  |  |  |
| $\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(6)$ | 121.9(3) | $\mathrm{O}\left(4^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$ | 106.5 (3) |
| $\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}\left(1^{\prime}\right)$ | 118.6 (3) | $\mathrm{C}\left(1^{\prime}\right) \mathrm{C}\left(2^{\prime}\right) \mathrm{C}\left(3^{\prime}\right)$ | 104.5 (3) |
| $C(6) \cdots \mathrm{N}(1)-\mathrm{C}\left(1{ }^{\prime}\right)$ | 119.5 (3) | $\mathrm{C}\left(2^{\prime}\right) \mathrm{C}\left(3^{\prime}\right) \mathrm{C}\left(4^{\prime}\right)$ | 103.1(3) |
| $N(1) \cdot \mathrm{C}(2) \mathrm{N}(3)$ | 114.4 (3) | $\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{O}\left(3^{\prime}\right)$ | 114.0 (3) |
| $\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{O}(2)$ | 122.6(3) | $\mathrm{C}\left(4^{\prime}\right) \mathrm{C}\left(3^{\prime}\right) \mathrm{O}\left(3^{\prime}\right)$ | 109.6 (3) |
| $\mathrm{N}(3)-\mathrm{C}(2)-\mathrm{O}(2)$ | 123.0 (3) | $\mathrm{O}\left(4^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$ | 104.2 (3) |
| $\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(4)$ | 126.3 (3) | $\mathrm{O}\left(4^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$ | 107.0 (3) |
| $N(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | 115.7 (3) | $\mathrm{C}\left(3^{\prime}\right) \mathrm{C}\left(4^{\prime}\right) \mathrm{C}\left(5^{\prime}\right)$ | 115.5 (3) |
| $\mathrm{N}(3)-\mathrm{C}(4)-\mathrm{O}(4)$ | 120.9 (3) | $\mathrm{C}\left(4^{\prime}\right) \mathrm{C}\left(5^{\prime}\right) \mathrm{O}\left(5^{\prime}\right)$ | 107.3(3) |
| $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{O}(4)$ | 123.4 (3) | $\mathrm{C}\left(5^{\prime}\right) \cdot \mathrm{O}\left(5^{\prime}\right) \mathrm{P}$ | $119.0(2)$ |
| $C(4) \cdots(5) \quad C(6)$ | 117.7 (3) | $\mathrm{O}\left(5^{\prime}\right) \mathrm{P} \mathrm{O}(1 \mathrm{P})$ | 106.5 (1) |
| $\mathrm{C}(4) \mathrm{C}(5)-\mathrm{C}(7)$ | 119.0 (3) | $\mathrm{O}\left(5^{\prime}\right) \mathrm{P} \quad \mathrm{O}(2 \mathrm{P})$ | 98.0 (1) |
| $\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(7)$ | 123.2 (3) | $\mathrm{O}\left(5^{\prime}\right) \mathrm{P} \quad \mathrm{O}(3 \mathrm{P})$ | 109.1 (1) |
| $N(1)-\mathrm{C}(6)-\mathrm{C}(5)$ | 123.4 (3) | $\mathrm{O}(1 \mathrm{P}) \mathrm{P} \mathrm{O}(2 \mathrm{P})$ | 115.1(1) |
| $\mathrm{C}\left(1^{\prime}\right)-\mathrm{O}\left(4^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$ | ') 107.3 (3) | $\mathrm{O}(1 \mathrm{P})-\mathrm{P} \quad \mathrm{O}(3 \mathrm{P})$ | $111.4(2)$ |
| $\mathrm{N}(1)-\mathrm{C}\left(\mathrm{I}^{\prime}\right)-\mathrm{O}\left(4^{\prime}\right)$ | ) 107.1 (3) | $\mathrm{O}(2 \mathrm{P})-\mathrm{P} \quad \mathrm{O}(3 \mathrm{P})$ | 115.3 (1) |
| $\mathrm{N}(1) \cdot \mathrm{C}\left(\mathrm{I}^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$ | ) $115.6(3)$ |  |  |



Fig. 1. A perspective view of the molecule, showing the atom numbering.
angle $\mathrm{O}\left(4^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{N}(1)-\mathrm{C}(6)$ is $65.7(4)^{\circ}$, compared with $55.9^{\circ}$ found in 5 -acetyl- $2^{\prime}$-deoxyuridine. It is noticed that these angles are much higher than the value expected for the $\mathrm{C}\left(4^{\prime}\right)$-exo-anti conformation from the correlation between the glycosidic torsion angle and the sugar puckering, which has been inferred from the structures of oligodeoxynucleotides (Dickerson \& Drew, 1981). It is possible that the present structure is strained by the crystal field and, therefore, is deformed from the stable molecular conformation, because it involves several notable sugar-base contacts, i.e. $\mathrm{O}\left(4^{\prime}\right) \ldots \mathrm{C}(6)[2.915(4) \AA], \mathrm{C}\left(2^{\prime}\right) \cdots \mathrm{C}(6)[3.033(5) \AA]$, $\mathrm{H}\left(\mathrm{C} 1^{\prime}\right) \cdots \mathrm{C}(2) \quad[2.34(4) \AA] \quad$ and $\mathrm{H}\left(\mathrm{C} 1^{\prime}\right) \cdots \mathrm{O}(2)$ [2.19 (4) Å|. On the other hand, the present glycosidic bond rotation can be regarded as normal, when it is compared with the large values observed in various $3^{\prime}, 5^{\prime}$-cyclic pyrimidine nucleotides (Sundaralingam, Haromy \& Prusiner, 1982), in which the sugars adopt the $\mathrm{C}\left(3^{\prime}\right)$-endo- $\mathrm{C}\left(4^{\prime}\right)$-exo conformation similar to the present one. Therefore, it seems more likely that the present structure does reflect a representative conformation for $\mathrm{C}\left(4^{\prime}\right)$-exo pyrimidine nucleosides. Another uncommon feature of the structure is that the conformation about the $\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$ bond is trans-gauche: $\mathrm{C}\left(5^{\prime}\right)-\mathrm{O}\left(5^{\prime}\right)$ is trans to $\mathrm{C}\left(4^{\prime}\right)-\mathrm{O}\left(4^{\prime}\right)$ and gauche to $\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$, torsion angle $\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{O}\left(5^{\prime}\right)$ being $-60.4(3)^{\circ}$. The conformation about the $\mathrm{C}\left(5^{\prime}\right)-$ $\mathrm{O}\left(5^{\prime}\right)$ bond is trans |torsion angle $\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-$ $\mathrm{O}\left(5^{\prime}\right)-\mathrm{P}=-153.5(2)^{\circ} \mathrm{I}$, as usual.

The bond distances of the thymine base are in agreement (within $0.016 \AA$ ) with those of thymidine (Young, Tollin \& Wilson, 1969), but the pyrimidine ring is appreciably distorted from planarity. Relative to the mean plane through $\mathrm{C}(4), \mathrm{C}(5), \mathrm{C}(6)$ and $\mathrm{N}(1)$, which is essentially planar [within 0.003 (3) $\AA$ ], C(2) and $\mathrm{N}(3)$ are displaced by 0.037 (3) and 0.117 (3) $\AA$, respectively, lying on the same side of the plane. The bond distances involved in the sugar moiety are in agreement (within $0.019 \AA$ ) with those of a similar conformation found in 5 -acetyl- $2^{\prime}$-deoxyuridine. The length


Fig. 2. A projection of the structure viewed along the $c$ axis.
of the glycosidic bond is $0.026 \AA$ shorter than that of thymidine. This may be due to the change in the sugar puckering and/or in the glycosidic bond rotation (Lo. Shefter \& Cochran, 1975).

The packing scheme in the crystal is shown in Fig. 2. The ionic groups and the water molecules are located close to each other, and form a layer parallel to the $b c$ plane, as frequently observed in nucleotide crystals. In the present structure, no appreciable base stacking is observed. All available hydrogens participate in hydrogen bonding, i.e. $\mathrm{N}(3)-\mathrm{H} \cdots \mathrm{O}(2 \mathrm{P})|2 \cdot 895(4) \AA|$. $\mathrm{O}\left(3^{\prime}\right)-\mathrm{H} \cdots \mathrm{O}(W 2) \quad|2.669(4) \AA|, \quad \mathrm{O}(W 1)-\mathrm{H}(1) \cdots$ $\mathrm{O}(3 \mathrm{P}) \quad[2.700(4) \AA, \quad \mathrm{O}(W 1)-\mathrm{H}(2) \cdots \mathrm{O}(1 \mathrm{P})$ [2.692 (4) $\AA$ |, $\quad \mathrm{O}(W 2)-\mathrm{H}(1) \cdots \mathrm{O}(2 \mathrm{P}) \quad \mid 2.801$ (4) $\AA$ i $\mid$. and $\mathrm{O}(W 2)-\mathrm{H}(2) \cdots \mathrm{O}(2)\left|2.788(5) \AA{ }_{\mathrm{A}}\right|$. The $\mathrm{Ca}^{2+}$ ion is surrounded by seven oxygen atoms $\mid \mathrm{O}(4), \mathrm{O}\left(3^{\prime}\right)$. $\mathrm{O}\left(5^{\prime}\right), \mathrm{O}(1 \mathrm{P}), \mathrm{O}(2 \mathrm{P}), \mathrm{O}(3 \mathrm{P})$ and $\mathrm{O}(W 1) \mid$ at distances ranging from 2.291 (3) to 2.555 (2) Å. Apart from those stated above, there are no notable intermolecular short contacts.

## References

Barr. P. J.. Chananont. P.. Hamor. T. A.. Jones. A. S.. O`LeARy. M. K. \& Walker. R. T. (1980). Tetrahedron, 36. 1269-1273.
Dickerson. R. E. \& Drew, H. R. (1981). Proc. Nail Acad. Sci. LSA, 12. 7318-7322.
Grant, D. F.. Killean. R. C. G. \& Lahrence. J. L. (1969). Acta Crusi. B25. 374-376.
International Tables for X'ray. Crystallography (1974). Vol. IV. pp. 99-101. Birmingham: Kynoch Press.
Lo. A.. Shefter, E. \& Cochran. T. G. (1975). J. Pharm. Sci. 64. 1707-1710.
Main. P.. Hull. S. E.. Lessinger, L.. Germain. G.. Deciferco. J.-P. \& Woolfson. M. M. (1978). MLI.TA.i78. A Sistem of Computer Programs for the Automatic Solution of Cristal Structures from X'rạ Diffraction Data. Inits. of Y'ork. England, and Louvain. Belgium.
Sato. T. (1983). Nucleic Acids Res. 11. 4933-4938.
St vidaralingam. M.. Haromy. T. P. \& Presiver. P. (1982). Acta Cryst. B38. 1536-1549.
Trleblood. K. N.. Horin. P. \& Llzz.ati. V. (1961). Acta Cryst. 14.965-982.

Young. D. W.. Tolim. P. \& W'llson. H. R. (1969). Acta Cryst. B25. 1423-1432.

# Structure of Calcium 2'-Deoxyadenosine $\mathbf{5}^{\prime}$-Phosphate Pentahydrate, $\mathbf{C a}^{2+} . \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{P}^{\mathbf{2 -}} . \mathbf{5} \mathrm{H}_{2} \mathrm{O}$ 

By Tomohiro Sato<br>Shionogi Research Laboratories, Shionogi \& Co., Ltd, Fukushima-ku, Osaka 553, Japan

(Received 24 October 1983: accepted 20 December 1983)


#### Abstract

M_{r}=459.4\), orthorhombic, $P 2_{1} 2_{1} 2_{1}, a=$ $6.882(1), \quad b=39.761(3), \quad c=6.569(1) \AA, \quad V=$ $1797.6(2) \AA^{3}, Z=4, D_{x}=1.697 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{CuK} \mathrm{\alpha})$ $=1.5418 \AA . \quad \mu(\mathrm{Cu} K \alpha)=4.40 \mathrm{~mm}^{-1} . \quad F(000)=960$. room temperature, final $R=0.024$ for 1884 observed reflections. The molecule has a $\mathrm{C}(4)$-exo- $\mathrm{O}\left(4^{\prime}\right)$-endo $\left({ }^{\circ} T_{4}\right)$ sugar associated with an anti glycosidic bond rotation Itorsion angle $\mathrm{O}\left(4^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{N}(9)-\mathrm{C}(8)=$ $60 \cdot 9(3)^{\circ} \mid$. The conformations about the $\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$ and $\mathrm{C}\left(5^{\prime}\right)-\mathrm{O}\left(5^{\prime}\right)$ bonds are trans-gauche $\mid \mathrm{C}\left(3^{\prime}\right)-$ $\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{O}\left(5^{\prime}\right)=-71 \cdot 3(2)^{\circ} \mid$ and trans $\mid \mathrm{C}\left(4^{\prime}\right)-$ $\mathrm{C}\left(5^{\prime}\right)-\mathrm{O}\left(5^{\prime}\right)-\mathrm{P}=169 \cdot 1(1)^{\circ} \mid$. respectively. All available H atoms participate in intermolecular hydrogen bonds.

Introduction. The crystal structure of the Na salt of 2'-deoxyadenosine 5 '-phosphate has been reported (Reddy \& Viswamitra. 1975). We have crystallized the Ca salt of the same nucleotide and subjected it to X-ray analysis. This study is part of a series of crystallographic investigations of nucleic acid constituents.


0108-2701/84/050738-03\$01.50

Experimental. Crystals grown from a water/2-methyl2,4 pentanediol solution by vapor diffusion. colorless plates, $D_{m}$ not determined. crystal $0.15 \times 0.20 \times$ 0.20 mm . Rigaku AFC-5 diffractometer, graphite monochromator, $\mathrm{Cu} K \alpha$ radiation. Lattice parameters refined by least-squares method ( 25 reflections. $29<$ $\left.2 \theta<50^{\circ}\right) .2 \theta \leq 140^{\circ}\left(\sin \theta / \lambda \leq 0.609 \AA^{-1}\right), \omega$ scan $\left(2 \theta \leq 30^{\circ}\right), \omega-2 \theta \operatorname{scan}\left(2 \theta>30^{\circ}\right): h 0$ to $8 . k 0$ to $48 . l$ 0 to 8. 1976 independent reflections. No absorption correction. Structure solved by MULTAN78 (Main. Hull. Lessinger. Germain. Declercq \& Woolfson. 1978). H atoms from difference Fourier. Structure refined by block-diagonal least-squares method. anisotropic temperature factors for non- H atoms. isotropic for H atoms: $\bigcup_{n} \Delta^{2}$ minimized. $\left.\Delta=\mid F_{0}\right)^{i}-\left|F_{c}\right|$. $\quad$. $=1 / \sigma^{2}\left(F_{o}\right)$ for $\left|F_{c}\right| \geq 3 \sigma\left(F_{\theta}\right)$, w $=0$ for $\left|F_{c}\right|<3 \sigma\left(F_{o}\right)$ or $|\Delta| \geq 3 \sigma\left(F_{o}\right), \quad \sigma\left(F_{o}\right)=\left.\left.\left|\sigma_{1}^{2}\left(F_{o}\right)+0 \cdot 00080\right| F_{o}\right|^{2}\right|^{1 / 2}$, $\sigma_{1}\left(F_{o}\right)$ is the e.s.d. based on counting errors (Grant. Killean \& Lawrence. 1969). $R=0.024$ for 1884 reflections $(w \neq 0) . \quad R_{w}=0.032, \quad S=1 \cdot 06$. Atomic scattering factors from International Tables for $X$-ray
ç 1984 International Union of Crystallography


[^0]:    * Lists of structure factors. anisotropic temperature factors and H -atom coordinates have been deposited with the British Library H -atom coordinates have been deposited with the British Library
    Lending Division as Supplementary Publication No. SUP 39024 ( 19 pp .). Copies may be obtained through The Executive Secretary. International Union of Crystallography. 5 Abbey Square. Chester CHI 2HU. England.

